lunes, 16 de diciembre de 2013


LA LUNA


La Luna es el único satélite natural de la Tierra. Su diámetro es de unos 3.476 km, aproximadamente una cuarta parte del de la Tierra. La masa de la Tierra es 81 veces mayor que la de la Luna. La densidad media de la Luna es de sólo las tres quintas partes de la densidad de la Tierra, y la gravedad en la superficie es un sexto de la de la Tierra.

La Luna orbita la Tierra a una distancia media de 384.403 km y a una velocidad media de 3.700 km/h. Completa su vuelta alrededor de la Tierra, siguiendo una órbita elíptica, en 27 días, 7 horas, 43 minutos y 11,5 segundos. Para cambiar de una fase a otra similar, o mes lunar, la Luna necesita 29 días, 12 horas, 44 minutos y 2,8 segundos.

Como tarda en dar una vuelta sobre su eje el mismo tiempo que en dar una vuelta alrededor de la Tierra, siempre nos muestra la misma cara. Aunque parece brillante, sólo refleja en el espacio el 7% de la luz que recibe del Sol.

Después de la Tierra, la Luna es el cuerpo espacial más estudiado.

EL ORIGEN DE LA LUNA

Hay, básicamente, tres posibilidades en cuanto a la formación de la luna:
1.- Era un astro independiente que, al pasar cerca de la Tierra, quedó capturado en órbita.
2.- La Tierra y la Luna nacieron de la misma masa de materia que giraba alrededor del Sol.
3.- La luna surgió de una especie de "hinchazón" de la Tierra que se desprendió por la fuerza centrífuga.

Actualmente se admite una cuarta teoría que es como una mezcla de las otras tres: cuando la Tierra se estaba formando, sufrió un choque con un gran cuerpo del espacio. Parte de la masa salió expulsada y se aglutinó para formar nuestro satélite. Y, aún, una quinta teoría que describe la formación de la Luna a partir de los materiales que los monstruosos volcanes de la época de formación lanzaban a grandes alturas.

Hipótesis de fisión

La hipótesis de fisión supone que originariamente la Tierra y la Luna eran un sólo cuerpo y que parte de la masa fue expulsada, debido a la inestabilidad causada por la fuerte aceleración rotatoria que en aquel momento experimentaba nuestro planeta. La parte desprendida se "quedó" parte del momento angular del sistema inicial y, por tanto, siguió en rotación que, con el paso del tiempo, se sincronizó con su periodo de traslación.

Se cree que la zona que se desprendió corresponde al Océano Pacífico, que tiene unos 180 millones de kilómetros cuadrados y con una profundidad media de 4.049 metros. Sin embargo, los detractores de esta hipótesis opinan para poder separarse una porción tan importante de nuestro planeta, éste debería haber rotado a una velocidad tal que diese una vuelta en tan sólo tres horas. Parece imposible tan fabulosa velocidad, porque, al girar demasiado rápido, la Tierra no se hubiese formado al presentar un exceso de momento angular.

Hipótesis de captura

Una segunda hipótesis denominada 'de captura', supone que la Luna era un astro planetesimal independiente, formado en un momento distinto al nuestro y en un lugar alejado.

La Luna inicialmente tenía una órbita elíptica con un afelio (punto más alejado del Sol) situado a la distancia que le separa ahora del Sol, y con un perihelio (punto más cercano al Sol) cerca del planeta Mercurio. Esta órbita habría sido modificada por los efectos gravitacionales de los planetas gigantes, que alteraron todo el sistema planetario expulsando de sus órbitas a diversos cuerpos, entre ellos, nuestro satélite. La Luna viajó durante mucho tiempo por el espacio hasta aproximarse a la Tierra y fue capturado por la gravitación terrestre.

Sin embargo, es difícil explicar cómo sucedió la importante desaceleración de la Luna, necesaria para que ésta no escapara del campo gravitatorio terrestre.

Hipótesis de acreción binaria

 
La hipótesis de la acreción binaria supone la formación al mismo tiempo tanto de la Tierra como de la Luna, a partir del mismo material y en la misma zona del Sistema solar. A favor de esta teoría se encuentra la datación radioactiva de las rocas lunares traídas a nuestro planeta por las diversas misiones espaciales, las cuales fechan entre 4.500 y 4.600 millones de años la edad lunar, aproximadamente la edad de la Tierra.

Como inconveniente tenemos que, si los dos se crearon en el mismo lugar y con la misma materia: ¿cómo es posible que ambos posean una composición química y una densidad tan diferentes?. En la Luna abunda el titanio y los compuestos exóticos, elementos no tan abundantes en nuestro planeta al menos en la zona más superficial.

Hipótesis de impacto

La hipótesis del impacto parece la preferida en la actualidad. Supone que nuestro satélite se formó tras la colisión contra la Tierra de un cuerpo de aproximadamente un séptimo del tamaño de nuestro planeta. El impacto hizo que bloques gigantescos de materia saltaran al espacio para posteriormente y, mediante un proceso de acreción similar al que formó los planetas rocosos próximos al Sol, generar la Luna.

Lo más dudoso de esta teoría es que tendrían que haberse dado demasiadas coincidencias juntas. L probabilidad de impactar con un astro errante era muy alta al inicio del Sistema Solar. Más dificil es que la colisión no desintegrase totalmente el planeta y que los fragmentos fuesen lo suficientemente grandes como para poder generar un satélite.

La teoría del impacto ha sido reproducida con ayuda de ordenadores, simulando un choque con un objeto cuyo tamaño sería equivalente al de Marte, y que, con una velocidad inferior a los 50.000 km/h, posibilitaría la formación de un satélite.

Hipótesis de precipitación

Últimamente ha aparecido otra explicación a la que dan el nombre de 'Hipótesis de precipitación' según la cual, la energía liberada durante la formación de nuestro planeta calentó parte del material, formando una atmósfera caliente y densa, sobre todo compuesta por vapores de metal y óxidos. Estos se fueron extendiendo alrededor del planeta y , al enfriarse, precipitaron los granos de polvo que, una vez condensados, dieron origen al único satélite de la Tierra.

MOVIMIENTOS DE LA LUNA

La Luna es el único satélite natural de la Tierra. La luna gira alrededor de su eje (rotación) en aproximadamente 27.32 días (mes sidéreo) y se traslada alrededor de la Tierra (traslación) en el mismo intervalo de tiempo, de ahí que siempre nos muestra la misma cara. Además, nuestro satélite completa una revolución relativa al Sol en aproximadamente 29.53 días (mes sinódico), período en el cual comienzan a repetirse las fases lunares.

Los instantes de salida, tránsito y puesta del Sol y de la Luna están relacionados con las fases. La Luna se traslada alrededor de la Tierra en sentido directo, en dirección Este. Como el Sol se mueve 1° por día hacia el Este. La Luna atrasa diariamente su salida respecto a la del Sol unos 50 minutos.

Rotación y traslación de la Luna

La Luna gira alrededor de la Tierra aproximadamente una vez al mes. Si la Tierra no girara en un día completo, sería muy fácil detectar el movimiento de la Luna en su órbita. Este movimiento hace que la Luna avance alrededor de 12 grados en el cielo cada día.

Si la Tierra no rotara, lo que veríamos sería la Luna cruzando la bóveda celeste durante dos semanas, y luego se iría y tardaría dos semanas ausente, durante las cuales la Luna sería visible en el lado opuesto del Globo.

Sin embargo, la Tierra completa un giro cada día, mientras que la Luna se mueve en su órbita también hacia el este. Así, cada día le toma a la Tierra alrededor de 50 minutos más para estar de frente con la Luna nuevamente (lo cual significa que nosotros podemos ver la Luna en el Cielo.) El giro de la Tierra y el movimiento orbital de la Luna se combinan, de tal suerte que la salida de la Luna se retrasa del orden de 50 minutos cada día.

Libración lunar

 
Para notar el movimiento de la Luna en su órbita, hay que tener en cuenta su ubicación en el momento de la puesta de Sol durante algunos días. Su movimiento orbital la llevará a un punto más hacia el este en el cielo en el crepüsculo cada día.

El movimiento propio de la Luna se traduce en un desplazamiento de oeste a este, pero su movimiento aparente se produce de este a oeste, consecuencia del movimiento de rotación de la Tierra.

La máxima superficie de la Luna visible desde la Tierra no es exactamente el 50% sino llega hasta el 59%, por un efecto conocido como libración. La excentricidad de la órbita lunar hace que la velocidad orbital no sea constante y que, por tanto, puedan resultar visibles en el curso de un mes partes normalmente escondidas en los bordes este y oeste. En este caso se habla de una libración en longitud. De forma similar se tiene una libración en la latitud como efecto de la inclinación de unos 5 grados de la órbita lunar sobre el plano de la eclíptica.

LAS FASES DE LA LUNA

Según la disposición de la Luna, la Tierra y el Sol, se ve iluminada una mayor o menor porción de la cara visible de la luna.

 

La Luna Nueva o novilunio es cuando la Luna está entre la Tierra y el Sol y por lo tanto no la vemos.


En el Cuarto Creciente, la Luna, la Tierra y el Sol forman un ángulo recto, por lo que se puede observar en el cielo la mitad de la Luna, en su período de crecimiento.

La Luna Llena o plenilunio ocurre cuando La Tierra se ubica entre el Sol y la Luna; ésta recibe los rayos del sol en su cara visible, por lo tanto, se ve completa.

Finalmente, en el Cuarto Menguante los tres cuerpos vuelven a formar ángulo recto, por lo que se puede observar en el cielo la otra mitad de la cara lunar.
 
Las fases de la luna son las diferentes iluminaciones que presenta nuestro satélite en el curso de un mes.

La órbita de la tierra forma un ángulo de 5º con la órbita de la luna, de manera que cuando la luna se encuentra entre el sol y la tierra, uno de sus hemisferios, el que nosotros vemos, queda en la zona oscura, y por lo tanto, queda invisible a nuestra vista: a esto le llamamos luna nueva o novilunio.

A medida que la luna sigue su movimiento de traslación, va creciendo la superficie iluminada visible desde la tierra, hasta que una semana más tarde llega a mostrarnos la mitad de su hemisferio iluminado; es el llamado cuarto creciente.

Una semana más tarde percibimos todo el hemisferio iluminado: es la llamada luna llena o plenilunio.

A la semana siguiente, la superficie iluminada empieza a decrecer o menguar, hasta llegar a la mitad: es el cuarto menguante.

Al final de la cuarta semana llega a su posición inicial y desaparece completamente de nuestra vista, para recomenzar un nuevo ciclo.

LOS ECLIPSES


Un eclipse es el oscurecimiento de un cuerpo celeste por otro. Como los cuerpos celestes no están quietos en el firmamento, a veces la sombra que uno proyecta tapa al otro, por lo que éste último se ve oscuro.

En el caso de la Tierra, la Luna y el Sol tenemos dos modalidades: eclipses de Sol, que consisten en el oscurecimiento del Sol visto desde la Tierra, debido a la sombra que la Luna proyecta; y eclipses de Luna, que son el oscurecimiento de la Luna vista desde la Tierra, debido que ésta se situa en la zona de sombra que proyecta la Tierra.
Foto 2
Si colocamos una pelota entre la luz y la pared se observará sobre la pared una sombra circular intensa y otra mayor, pero más débil. De igual manera, la luna y la tierra proyectan en el espacio gigantescos conos de sombra producidos por la iluminación del sol.

Cuando la luna se interpone entre la tierra y el sol, el cono de su sombra se proyecta sobre una zona de la tierra, y las personas que habitan en esa zona quedan en la oscuridad, como si fuese de noche, porque la luna eclipsa, tapa al sol. Este astro se ve como cubierto, que no es otra cosa sino la luna. Esto es un eclipse de sol.

Del mismo modo, cuando la luna cruza el cono de sombra de la tierra, desaparece a la vista de los habitantes del hemisferio no iluminado (noche) los cuales pueden presenciar, en su totalidad, el eclipse de luna.

El eclipse de sol se produce solamente sobre una pequeña faja de la tierra, porque la luna, por su menor tamaño, no oculta completamente al sol para la totalidad de la tierra.

Los eclipses de luna pueden ser de dos tipos: Totales: cuando están en el cono de sombra de la tierra, y parciales: cuando sólo se introduce parcialmente en la sombra.

Por su parte, los eclipses de sol pueden ser de tres tipos:

Totales: Cuando la luna se interpone entre el sol y la tierra, Y los habitantes no ven la luz solar durante algunos minutos.

Parciales: Cuando la penumbra abarca una extensión de tierra y los habitantes que están en ella sólo ven una porción de sol.

Anulares: Cuando el cono de sombra de la luna no llega hasta la tierra porque se encuentra demasiado lejos del planeta para ocultar el disco solar.

El cono de sombra se divide en dos partes: umbra o sombra total, y penumbra o sombra parcial. Para las personas que se encuentran en la zona de la umbra, el eclipse será total, mientras que para las personas que se encuentran en la penumbra el eclipse será parcial. La faja de sombra o umbra es de 270 Km. Y la penumbra alcanza hasta 6400 Km de anchura. En un año puede haber un máximo de 7 eclipses y un mínimo de 2.

LA SUPERFICIE LUNAR

La superficie lunarLa Luna es un mundo lleno de montañas, cráteres y otras formaciones. Los cráteres lunares se formarons por el impacto de meteoritos. En general tienen forma de anillo, una base y un pico central. Su tamaño varía desde pocos centímetros hasta 260 kilómetros. Se conocen picos centrales de hasta 4000 metros y anillos del mismo tamaño.

Los "mares" de la Luna son zonas llanas de color oscuro. Se deben a la salida de lava basáltica durante el periodo de formación de la luna. Las montañas pueden estar aisladas o formando grandes cadenas. También hay grietas, con profundidades de hasta 400 metros y varios kilómetros de longitud.

Cómo se formó el suelo de la Luna

Los científicos han estudiado la edad de las rocas lunares provenientes de regiones con cráteres y han podido determinar cuándo se formaron los cráteres. Al estudiar las zonas de color claro de la Luna conocidas como mesetas, los científicos encontraron que, desde hace aproximadamente 4.600 a 3.800 millones años, restos de rocas cayeron sobre la superficie de la joven Luna y formaron cráteres muy rapidamente. Esta lluvia de rocas cesó y desde entonces se han formado muy pocos cráteres.

Algunas muestras de rocas extraídas de estos grandes cráteres, llamados cuencas, establecen que aproximadamente hace 3.800 a 3.100 millones de años, varios objetos gigantescos, similares a los asteroides, chocaron contra la Luna, justo cuando cesaba la lluvia rocosa.

Poco tiempo después, abundante lava llenó las cuencas y dió origen a los obscuros mares. Esto explica por qué hay tan pocos cráteres en los mares y, en cambio, tantos en las mesetas. En estas no hubo flujos de lava que borraran los cráteres originales, cuando la superficie de la Luna estaba siendo bombardeada por restos planetarios durante la formación del Sistema Solar.

La parte más lejana de la Luna tiene solo un "mare", por esto que los científicos creen que esta área representa cómo era la Luna hace 4.000 millones de años.

Geografía lunar

Lo que vemos de la Luna es una combinación de cráteres, crestas de montañas, valles estrechos y profundos, y llanuras niveladas o mares. El más grande de los mares es el Mare Imbrium (Mar de Lluvias), con aproximadamente 1120 kilómetros de diámetro.

Hay unos 20 mares importantes en el lado de la Luna encarado a la Tierra. Entre ellos están el Mare Serenitatis (Mar de la Serenidad), Mare Crisium (Mar de Crisis) y Mare Nubium (Mar de Nubes). Aunque son considerados llanuras , los mares no son completamente planos. Son atravesados por riscos, están plagados de cráteres y son interrumpidos por precipicios y paredes.

Los mares lunares están rodeados por grandes montañas, a las que se puso nombres como Alpes, Pirineos y Cárpatos, de acuerdo a las cordilleras terrestres. La cordillera lunar más alta es Leibnitz, con crestas de hasta 9.140 metros.

Decenas de miles de cráteres están esparcidos por la superficie de la Luna, a menudo solapándose entre si. También hay más de mil valles profundos, llamados fisuras lunares, que tienen de 16 a 482 kilómetros de largo y alrededor de 3 kilómetros o menos de ancho. Se cree que estas fisuras son hendiduras en la superficie que se formaron a lo largo de las zonas de debilidad causadas por algún tipo de calor y expansión interior.

LA OBSERVACIÓN DE LA LUNA

La observación de la LunaObservar la luna no es difícil, ya que es el cuerpo astronómico más cercano a la Tierra. Con un pequeño telescopio o unos buenos prismáticos, y una base de apoyo (un trípode, por ejemplo) se pueden apreciar muchos detalles, inimaginables en la observación de cualquier otro cuerpo del Sistema Solar.

Cuando la Luna comienza su período creciente, podemos aprovechar para observar detalles sobresalientes de su superficie, sobre todo, en el Terminador, zona que delimita la luz y la oscuridad. Las luces y sombras que se producen muestran los diferentes accidentes selenográficos y señala la profundidad de los cráteres y la altura de las montañas.
Cuando Galileo se convirtió en el primer humano en ver la Luna a través del telescopio, nuestro conocimiento sobre la Luna cambió para siempre. Nunca más sería un objeto misterioso en el cielo, sino un mundo hermano lleno de montañas anulares y de otras formaciones.

Giovanni Riccioli en 1651 bautizó los rasgos más prominentes con los nombres de astrónomos famosos; a las grandes áreas oscuras y lisas las llamó "mares" o "maria" (singular "mare"). Algunos de los nombres que usó para los cráteres de la Luna fueron de personas abordadas en "Astrónomos" Tycho (singular por las bandas brillantes que irradian desde allí), Tolomeo ("Ptolemaeus"), Copérnico, Kepler, Aristarco, Hiparco, Eratóstenes; Metón y Pitágoras están en el borde, cerca del polo norte.

Posteriormente gentes que vivieron después del siglo XVII hicieron lo mismo con los restantes: los cráteres Newton y Cavendish están en el borde sur del disco visible, Goddard y Lagrange también están cerca del borde. También, "Galilaei" es un crater pequeño y poco distinguido (¿Debido al destierro de Galileo?). Sin embargo, desde que los rusos fueron los primeros en observar la cara oculta de la Luna, un importante cráter allí, lleva el nombre de Tsiolkovsky, quien al final del siglo XIX auspició la idea de los vuelos espaciales.
Foto 3
El primer objeto al que suele apuntar el aficionado es la Luna. En el telescopio es posible disponer oculares de distancias focales cortas para obtener ampliaciones de la superficie, al ser un objeto sumamente brillante es posible utilizar grandes aumentos. Los principales rasgos a observar son los múltiples cráteres de impacto (producto del choque de objetos de diferentes tamaños contra la superficie lunar) y las grandes extensiones llanas llamadas mares.

El mejor momento de observación no es la Luna llena, sino los cuartos crecientes y menguantes y en los días cercanos a ellos. En el día de Luna llena los rayos solares alcanzan la superficie lunar de forma perpendicular, de tal manera que las formaciones en la superficie no producen sombras, en cambio los días anteriores y posteriores las sombras son mas pronuncias (lo son mas cuanto mas cerca se encuentre el día de Luna nueva).

No es necesario un telescopio de grandes dimensiones para realizar observaciones lunares de calidad, por ejemplo con un reflector newtoniano de 114 mm (4,5 pulgadas) de diámetro se pueden distinguir marcas en la superficie de menos de 10 Km. Mediante la utilización de binoculares se pueden observar muchas características superficiales como los mares y numerosos cráteres de impacto. Es muy recomendable, sobre todo para los que utilizan telescopio, poseer mapas detallados de la superficie que le ayuden a identificar los cráteres y demás zonas.

Al hacer una observación es conveniente seleccionar una zona especifica, especialmente elegida según la fase y posición de la misma. La zona mas interesante para observar es siempre la del terminador (la división entre la sección iluminada y la oscura, día y noche lunar). Una vez ubicada se puede hacer un dibujo a lápiz y en positivo (no como en el caso de otros objetos los cuales se suelen dibujar en negativo por ser mas conveniente) de esa zona. Se deben identificar los rasgos superficiales, los cráteres de impacto, las cadenas montañosas, ect. Se debe detallar la edad de la Luna en ese instante (los días, horas y minutos transcurridos desde la Luna nueva) y la ampliación utilizada.

HUMANOS EN LA LUNA

Los alunizajes con éxito de las sondas espaciales no tripuladas de la serie americana Surveyor y de la soviética Luna en la década de 1960 y, finalmente, los alunizajes tripulados en la superficie lunar del programa Apolo, hicieron realidad un viejo sueño: pisar la Luna.

Los astronautas del Apolo recogieron rocas lunares, sacaron miles de fotografías y colocaron instrumentos en la Luna que enviaron información a la Tierra por telemetría de radio. Había una gran euforia, pero ésta se fue apagando lo que, unido a la falta de presupuesto, llevó a abandonar las expediciones lunares después del Apolo 17.
Foto 2
Desde los comienzos de los vuelos espaciales, la Luna fue el primer destino. Los primeros vehículos espaciales que alcanzaron la Luna fueron los Luna 1, 2 y 3 de la antigua Unión Soviética , en 1959. De estos, el Luna 3 rodeó la Luna, tomó fotografías del lado oscuro, que no se ve desde la Tierra, y posteriormente escaneó y transmitió esas imágenes (a la derecha); desgraciadamente su calidad era pobre. En la década que siguió, otras 19 misiones tuvieron como meta la Luna.

En 1970 un vehículo soviético aluniza y vuelve con una muestra de roca y más tarde ese mismo año alunizó un vehículo con control remoto el "Lunokhod", que exploró su alrededor durante casi un año. Retornó con muestras y siguieron otros Lunokhods; la serie finalizó en 1976. Sin embargo, las pruebas fallidas de grandes cohetes desarrollados para vuelos humanos tripulados, finalizaron cualquier plan de exploración lunar tripulada por parte de la Unión Soviética.

Los primeros intentos por los EE.UU. para enviar un vehículo espacial no tripulado a la Luna (1958-64) fallaron ó enviaron escasos datos. No obstante, en Julio de 1964, el Ranger 7 envió imágenes de TV claras de su impacto sobre la Luna, como lo hicieron también los Rangers 8 y 9. De los 7 "alunizajes suaves" de la serie "Surveyor" (1966-8), 5 se ejecutaron bien y enviaron datos y fotos. En Noviembre de 1969, después el Apollo 12 alunizó a 500 pies (160 metros) del "Surveyor 3", los astronautas recuperaron su cámara y la trajeron de vuelta a la Tierra. Además del proyecto Surveyor, 5 orbitantes lunares fotografiaron la Luna y ayudaron a hacer mapas precisos de su superficie.

El 25 de Mayo de 1961, aproximadamente un mes después de que el ruso Yuri Gagarin se convirtiera en el primer humano en orbitar el globo terrestre, el presidente de los EE.UU. John F. Kennedy propuso al Congreso "que esta nación deberá trabajar para conseguir el objetivo, antes de finalizar esta década, de poner un hombre en la Luna y traerlo de vuelta a la Tierra".

Siguieron las misiones Apollo, con el Apollo 8 rodeando la Luna en 1968 y, finalmente, alunizando allí el Apollo 11 el 20 de Julio de 1969. Siguieron otros cinco alunizajes, el último en Diciembre de 1972. Solo falló en el alunizaje el Apollo 13, su tripulación estuvo cerca de la muerte debido una explosión abordo de su nave en el camino hacia la Luna

La Luna no ha vuelto a ser visitada por los humanos desde 1972, pero algunas misiones orbitales han estudiado el campo magnético de la Luna, así como las emisiones de rayos X y gamma, de lo que se pueden deducir algunas variaciones de la composición de su superficie.

LA EROSIÓN

LA EROSIÓN DE LA SUPERFICIE DE LA TIERRA

La erosión de la superfície terrestreLlamamos "erosión" a una serie de procesos naturales de naturaleza física y química que desgastan y destruyen los suelos y rocas de la corteza de un planeta, en este caso, de la Tierra.

La erosión terrestre es el resultado de la acción combinada de varios factores, como la temperatura, los gases, el agua, el viento, la gravedad y la vida vegetal y animal. En algunas regiones predomina alguno de estos factores, como el viento en las zonas áridas.

También, y mucho más en los últimos tiempos, se produce una erosión acelerada como el resultado de la acción humana, cuyos efectos se perciben en un periodo de tiempo mucho menor. Sin la intervención humana, estas pérdidas de suelo debidas a la erosión se verían compensadas por la formación de nuevos suelos en la mayor parte de la Tierra.

En este capítulo vamos a ver qué es la erosión y cómo se produce.

LA METEORIZACIÓN

La meteorizaciónLa corteza terrestre sufrió numerosas alteraciones causadas por las fuerzas internas del planeta, por lo que se rompió y se formó de nuevo. Una gran parte de estos procesos continua actuando.

Pero desde que existe la atmósfera hay otros agentes que han contribuido a transformarla lentamente hasta tener el aspecto que ahora nos presenta. Todos estos procesos se denominan "meteorización" o, genéricamente, "erosión" y los agentes causantes (agentes geológicos externos) pueden ser de tipo físico (mecánico), químico y biológico.

La meteorización produce fragmentos de rocas y minerales, así como otros productos residuales y solubles, que pueden ser transportados y depositados a otros niveles, lo que deja nuevas superficies expuestas a la meteorización.

Erosión mecánica

La meteorización mecánica es la disgregación física de las rocas en fragmentos, a causa de los cambios de temperatura, humedad y actividad biológica.

Temperatura Al calentarse las rocas y minerales se producen diferencias de tensión en su estructura. Los materiales oscuros absorben más calor que los claros y están expuestos. Las altas variaciones de temperatura entre el día y la noche imprimen a las rocas fuertes contracciones y dilataciones, que provocan fisuras y, con el tiempo, su fragmentación.

Agua: El agua líquida influye en la meteorización mecánica de las rocas, y aún más cuando se trata de hielo. En pocas horas el hielo puede abrir fisuras en las rocas y exponerlas a una acción acelerada de otros agentes. Las rocas de las capas más superficiales de la corteza terrestre, presentan grietas o fisuras. Cuando el agua de lluvia o procedente de los deshielos penetra en el interior de estas grietas y la temperatura desciende por debajo de los 0 grados, se expande. Si la roca es muy porosa, su disgregación puede llegar a tener consistencia granular.

Actividad biológica: Cuando las rocas ya presentan fisuras pueden ser colonizadas por las raíces de los árboles, que imprimen presión conforme crecen y aumentan de volumen. La presión ejercida por las raíces no es comparable a la del hielo, pero puede ser suficiente para generar rotura y desprendimiento de rocas, que quedan así expuestas a la acción otros agentes.

LA METEORIZACIÓN QUÍMICA
La meteorización químicaLa meteorización química es el conjunto de los procesos llevados a cabo por medio del agua o por los agentes gaseosos de la atmósfera como el oxígeno y el dióxido de carbono.

Las rocas se disgregan más fácilmente gracias a este tipo de meteorización, ya que los granos de minerales pierden adherencia y se disuelven o desprenden mejor ante la acción de los agentes físicos.
Disolución: Consiste en la incorporación de las moléculas de un cuerpo sólido a un disolvente como es el agua. Mediante este sistema se disuelven muchas rocas sedimentarias compuestas por las sales que quedaron al evaporarse el agua que las contenía en solución.

Hidratación: Es el proceso por el cual el agua se combina químicamente con un compuesto. Cuando las moléculas de agua se introducen a través de las redes cristalinas de las rocas se produce una presión que causa un aumento de volumen, que en algunos casos puede llegar al 50%. Cuando estos materiales transformados se secan se produce el efecto contrario, se genera una contracción y se resquebrajan.

Oxidación: La oxidación se produce por la acción del oxígeno, generalmente cuando es liberado en el agua. En la oxidación existe una reducción simultánea, ya que la sustancia oxidante se reduce al adueñarse de los electrones que pierde la que se oxida. Los sustratos rocosos de tonalidades rojizas, ocres o parduzcas, tan abundantes, se producen por la oxidación del hierro contenido en las rocas.

Hidrólisis: Es la descomposición química de una sustancia por el agua, que a su vez también se descompone. En este proceso el agua se transforma en iones que pueden reaccionar con determinados minerales, a los cuales rompen sus redes cristalinas. Este es el proceso que ha originado la mayoria de materiales arcillosos que conocemos.

Carbonatación: Consiste en la capacidad del dióxido de carbono para actuar por si mismo, o para disolverse en el agua y formar ácido carbónico en pequeñas cantidades. El agua carbonatada reacciona con rocas cuyos minerales predominantes sean calcio, magnesio, sodio o potasio, dando lugar a los carbonatos y bicarbonatos.

Acción biológica: Los componentes minerales de las rocas pueden ser descompuestos por la acción de sustancias liberadas por organismos vivos, tales como ácidos nítricos, amoniacos y dióxido de carbono, que potencian la acción erosionadora del agua.

TIPOS DE SUELOS

Tipos de suelosGracias a la erosión y a la actividad de los seres vivos, la porción externa de la corteza rocosa terrestre, su superficie, se convierte en aquello que conocemos como "suelos".

Sin el suelo sería imposible la existencia de plantas superiores y, sin ellas, ni nosotros ni el resto de los animales podríamos vivir. A pesar de que forma una capa muy delgada, es esencial para la vida en tierra firme. Cada región del planeta tiene unos suelos que la caracterizan, según el tipo de roca de la que se ha formado y los agentes que lo han modificado.

Formación del suelo

El suelo procede de la interacción entre la atmósfera, y biosfera. El suelo se forma a parir de la descomposición de la roca madre, por factores climáticos y la acción de los seres vivos. Esto implica que el suelo tiene una parte mineral y otra biológica, lo que le permite ser el sustento de multitud de especies vegetales y animales.

La descomposición de la roca madre puede deberse a factores físicos y mecánicos, o por alteración, o descomposición química. En este proceso se forman unos elementos muy pequeños que conforman el suelo, los coloides y los iones. Dependiendo del porcentaje de coloides e iones, y de su origen, el suelo tendrá unas determinadas características.

La materia orgánica procede, fundamentalmente, de la vegetación que coloniza la roca madre. La descomposición de estos aportes forma el humus bruto. A estos restos orgánicos vegetales se añaden los procedentes de la descomposición de los aportes de la fauna, aunque en el porcentaje total de estos son de menor importancia.

La descomposición de la materia orgánica aporta al suelo diferentes minerales y gases: amoniaco, nitratos, fosfatos, ... Estos son elementos esenciales para el metabolismo de los seres vivos y conforman la reserva trófica del suelo para las plantas, además de garantizar su estabilidad.

Clasificación de los suelos

El suelo se clasificar según su textura: fina o gruesa, y por su estructura: floculada, agregada o dispersa, lo que define su porosidad que permite una mayor o menor circulación del agua, y por lo tanto la existencia de especies vegetales que necesitan concentraciones más o menos elevadas de agua o de gases.

El suelo también se puede clasificar por sus características químicas, por su poder de absorción de coloides y por su grado de acidez (pH), que permite la existencia de una vegetación más o menos necesitada de ciertos compuestos.

Los suelos no evolucionados son suelos brutos, muy próximos a la roca madre y apenas tienen aporte de materia orgánica. Son resultado de fenómenos erosivos o de la acumulación reciente de aportes aluviales. De este tipo son los suelos polares y los desiertos, tanto de roca como de arena, así como las playas.

Los suelos poco evolucionados dependen en gran medida de la naturaleza de la roca madre. Existen tres tipos básicos: ránker, rendzina y los suelos de estepa. Los suelos ránker son más o menos ácidos, como los suelos de tundra y los alpinos. Los suelos rendzina se forman sobre una roca madre carbonatada, como la caliza, suelen ser fruto de la erosión y son suelos básicos. Los suelos de estepa se desarrollan en climas continentales y mediterráneo subárido. El aporte de materia orgánica es muy alto. Según sea la aridez del clima pueden ser desde castaños hasta rojos.

En los suelos evolucionados encontramos todo tipo de humus, y cierta independencia de la roca madre. Hay una gran variadad y entre ellos se incluyen los suelos de bosques templados, los de regiones con gran abundancia de precipitaciones, los de climas templados y el suelo rojo mediterráneo. En general, si el clima es propicio y el lugar accesible, la mayoria de estos suelos están hoy ocupados por explotaciones agrícolas.

LA EROSIÓN FLUVIAL

Las aguas continentales son un agente erosivo de primera magnitud. En forma de rios que discurren sobre la superficie, o de corrientes subterráneas, el agua desgasta los materiales que hay por donde pasa y arrastra los restos en dirección al mar, dejándolos depositados en diversos lugares, formando nuevos suelos y, en definitiva, modelando el paisaje.

El agua crea cascadas, gruras, desfiladeros, meandros y deltas. En ocasiones inunda determinadas regiones, más o menos amplias, del territorio. La vida se ha desarrollado de forma más prolífera, desde siempre, en los márgenes de los rios.

La acción erosiva de los rios

La acción erosiva de los rios
La erosión debida a las aguas corrientes sigue las mismas etapas en que se divide de forma natural el curso de un rio. Hay una primera etapa en que la erosión mecánica provocada por el agua y los materiales que arrastra es muy intensa en el curso alto del rio. En la segunda etapa, de transporte, la erosión mecánica sigue activa pero empieza a actuar la erosión química. Esta tiene lugar en el curso medio. Finalmente, en el curso bajo predomina la sedimentación de los materiales transportados, la acción mecánica se reduce muchísimo y prácticamente sólo actua la erosión química.

La acción erosiva de un rio se debe a la energía del agua. Es capaz de arrancar trozos de roca que, al ser arrastrados por la corriente, actuan como un martillo sobre el cauce del rio, desprendiendo nuevos fragmentos. Como el cauce no es regular, se suelen producir remolinos que arrastran arenas y gravas, puliendo el fondo del rio y creando cavidades.

Otras veces, la pendiente elevada hace el agua forme saltos, cascadas o cataratas, algunas de las cuales llegan hasta los 1000 metros de altura. La zona de salto retrocede gradualmente aguas arriba a medida que se desgasta. En otros casos, cuando el curso se encuentra con grandes obstáculos, el agua "busca" las zonas más frágines, las desgasta y forma desfiladeros o cañones.

En terrenos calcáreos es frecuente la aparición de cuevas subterráneas causadas por la erosión química del agua, que transforma el carbonato insoluble en bicarbonato soluble y, después, lo disuelve.

Inundaciones

Durante las temporadas de lluvias intensas o cuando se produce el deshielo, el caudal de un rio puede aumentar tanto que no quepa dentro de su cauce. Entonces el agua se desborda por las riberas. Este fenómeno se produce a veces de forma gradual, pero otras lo hace de forma violenta, provocando una gran erosión en todo el territorio.
Foto 4

Meandros

El resultado de la erosión consiste en materiales más o menos finos que el agua arrastra a lo largo del curso del rio. En el curso medio empiezan a depositarse cuando la fuerza de la corriente no es capaz de mantener estas partículas en suspensión.

Pero la fuerza erosiva actua después sobre estos depósitos y los desgasta más por la zona en que la velocidad del agua es mayor, mientras deposita nuevos materiales donde es más débil. El resultado final son unos depósitos de forma sinuosa que llamamos meandros. Con el tiempo y las crecidas, el rio puede volver a abrirse paso en línea recta, dejando en sus márgenes lagunas en forma de media luna que, con el tiempo, suelen secarse.

Los Deltas

El final del proceso erosivo fluvial tiene lugar en la desembocadura del rio, aunque en algunos casos la fuerza de la corriente es capaz de seguir erosionando el fondo de la plataforma continental y formar un valle submarino.

En muchos casos, sobre todo en grandes rios con mucha erosión, los materiales más finos se depositan en la desembocadura formando un delta.. Los deltas son, pues, terrenos sedimentarios extensos en los cuales hay un equilibrio constante entre la fuerza destructiva de la corriente y el depósito de nuevos materiales.

LA EROSIÓN PRODUCIDA POR EL VIENTO (EÓLICA)


La erosión eólicaComparado con el agua, el viento resulta un agente erosivo menos intenso, pero en las regiones secas adquiere una importancia muy especial. En estas zonas áridas el viento ha formado los desiertos, que constituyen una superficie muy extensa a lo largo y ancho de la Tierra.

El viento constante forma estructuras tan conocidas como las dunas, pero también produce otras formas muy particulares y, a veces, espectaculares, en las rocas de las regiones donde actua con mayor intensidad.

La acción erosiva del viento

El viento, por sí mismo, no tiene suficiente fuerza para producir efectos de meteorización. Lo que sí puede hacer es transportar partículas que, cuando chocan con el terreno, lo van desgastando. Este tipo de erosión suele ser lento y, para que se produzca, el territorio debe estar desnudo, ya que la vegetación disminuye o anula el efecto.

La erosión eólica se produce, pues, en zonas áridas, como los desiertos y la alta montaña. Estos tienen además otra característica imprescindible: las grandes diferencias de temperaturas. Esto hace que la roca se rompa y la erosión eólica pueda actuar con mayor eficacia.

La corrosión es la abrasión sufrida por las rocas al ser friccionadas por los impactos de las partículas arenosas que son transportadas por el viento. Cuando estas partículas golpean las rocas sufren a su vez una transformación, tomando un aspecto redondeado. Cuando el viento pierde fuerza va depositando los materiales transportados de forma gradual, lo que habitualmente da lugar a la acumulación de partículas de similar tamaño y peso.

Desiertos y dunas

Desiertos y dunas
Generalmente se llama desierto a un área cuya precipitación media anual es inferior a 250 mm y donde, en la mayoría de los casos, la evaporación excede a la precipitación como resultado de una temperatura media alta. Debido a la falta de humedad en el suelo y en la atmósfera, los rayos del Sol inciden con fuerza. Las temperaturas durante el día pueden alcanzar los 55 °C a la sombra; durante la noche, el suelo del desierto irradia el calor a la atmósfera y las temperaturas pueden descender hasta el punto de congelación.

Las dunan son como montaña de arena que se forman en los desiertos, aunque también lo hacen en el borde de los lagos y del mar, donde los vientos son fuertes y tienden a soplar en una sola dirección. Los campos de dunas se extienden a lo largo de miles de kilómetros cuadrados en los desiertos del norte de África, en la península Arábiga y en Asia central.

El viento, al mover los granos de arena, causa el crecimiento en altura de las dunas, así como su traslado. Una duna en crecimiento puede desplazarse hasta 30 m por año. La cara que opone al viento es siempre más larga y menos empinada que la cara contraria.

Los depósitos de dunas antiguas que quedan enterrados se transforman en arenisca, la cual presenta una estratificación asimétrica, llamada estratificación cruzada, que revela la dirección del viento que la originó.

LA EROSIÓN GLACIAL


La erosión glacialLos glaciares son agentes erosivos de gran importancia que, en el pasado, modelaron una buena parte de los paisajes que ahora conocemos en latitudes medias y altas de todo el planeta.

Las enormes masas de hielo desplazándose lentamente por efecto de la gravedad llevan a término una tarea de desgaste implacable sobre los terrenos en que se deslizan, que se puede observar fácilmente en aquellas regiones donde los glaciares han desaparecido. El hielo es capaz de cortar o arrancar enormes rocas que otros agentes erosivos no podrían.

Partes de un glaciar

A medida que un glaciar desciende por un valle o avanza a través de una amplia zona, en el caso de las grandes extensiones de hielo, va modelando el terreno. Desplaza las rocas que encuentra a su paso y el hielo rompe y arrastra las subyacentes. Las rocas inmersas en el fondo del glaciar actúan como partículas abrasivas, al lijar y pulir la piedra del lecho sobre el que se desplaza.

En la cabecera del valle de un glaciar, las paredes quedan erosionadas con una forma semicircular denominada circo glaciar. La erosión progresiva y simultánea de estas paredes en distintos lados de una montaña puede dar lugar a lo que se conoce como un cuerno (horn) o pico piramidal. Los valles por los que ha pasado un glaciar tienen forma de U en vez de la forma de V, típica de la erosión de los valles fluviales.

Con frecuencia, el valle glaciar está excavado tan profundamente que las bocas o desembocaduras de los valles tributarios quedan a un nivel superior con respecto al fondo del canal glaciar, originando los llamados valles colgados. Los fiordos son valles glaciares parcialmente inundados por el mar.

Aludes

Aludes
Una forma de erosión distinta de los glaciares, pero también provocada por la acumulación de agua en estado sólido, son los aludes. Un alud es el desprendimiento de grandes masas de hielo y nieve que desciende desde las cumbres hacia los valles. A su paso, un alud arrastra la vegetación, dejando una estela de terreno desnudo donde puede actuar más fácilmente la erosión.

Los aludes se producen cuando se acumula mucha nieve en una zona de pendiente elevada, especialmente cuando se deposita sobre otra capa de consistencia distinta que le pueda servir como superficie de deslizamiento, quedando en un equilibrio inestable.

El desencadenante del alud puede tener origen diverso. Se puede producir de forma espontánea cuando el propio peso de una capa supera la fuerza de rozamiento que la mantenía en reposo. También se producen aludes en la época del deshielo, al disminuir la fuerza de fijación. Incluso por el paso de esquiadores o por vibraciones de cualquier tipo.

Una pequeña masa de nieve inicia el descenso. Al apoyar su peso sobre otra hace que también se desprenda. Así, a medida que desciende se van incorporando nuevas masas hasta que puede llegar a adquirir un gran volumen. Es, por tanto una de las pocas formas de erosión que actuan de forma violenta, en poco tiempo.

LA EROSIÓN MARINA


Erosión marinaLa costa es la zona limítrofe entre la tierra firme y el mar. Se encuentra constantemente sometida a la acción erosiva del agua, por lo cual adquiere formas muy diversas, dependiendo del tipo de terreno y de la actividad de las olas, mareas y corrientes marinas.

Tiene acantilados y playas, deltas y estuarios, y, a veces, aparece recortada en antiguos valles inundados. Las corrientes marinas se llevan parte del material erosionado hacia el mar en unos lugares y lo deposita, desgastado, en otros. Así se forma un acantilado en un lugar y una playa en otro.

Acantilados y playas

Las costas acantiladas son aquellas que terminan abruptamente en la línea de la costa. Por debajo del acantilado en sí mismo, de fuerte pendiente o vertical, están el punto de inflexión, justo encima de la línea de costa, y la plataforma suavemente inclinada hacia el mar, que puede ser arenosa o de cantos o rocosa.

La acción del oleaje y las corrientes marinas arranca material rocoso, lo acumula al pie del acantilado y forma un depósito que, al principio, queda bajo el agua pero después puede emerger formando una pequeña playa. La acción de las mareas también es importante, ya que durante un tiempo introduce agua entre las rocas, reblandeciéndolas, y durante el resto del dia las deja a la intemperie para que actuen los agentes atmosféricos. Además, proporciona varios niveles de actuación de las olas.

El material aportado al océano por los ríos y retrabajado por la erosión del oleaje es distribuido a lo largo de las costas, donde forman playas, o transportado por corriente marinas hacia la plataforma continental y las parte más profundas del océano.

Las playas son la expansión del balance entre la erosión marina producida por las olas, mareas y corrientes marinas y los aportes suministrados por la propia erosión marina desde otras zonas y por los ríos. Los agentes del modelado costero son las olas, las corrientes y las mareas.

Formas del litoral

Formas del litoral
Además del propio relieve de la plataforma continental, las diferencias en las formas de erosión marina hacen que las formas litorales sean muy variadas.

Cabos: Son partes de la costa que se adentran de forma aguda en el mar.

Golfos: Un golfo es una penetración de grandes dimensiones del mar en la costa formando una curva. En cada extremo suele tener un cabo.

Bahías: Una bahía es como un golfo de dimensiones más reducidas y, en general, más abierto.

Ensenadas: Se llama así a una bahía o un entrante de mar reducido y protegido.

Calas: Una cala es una ensenada estrecha y de paredes escarpadas.

Albuferas: Cuando una bahía queda convertida en un lago, al ser cerrada su unión con el resto del mar por un cordón litoral, se forma una albufera.

Estuarios: Es la zona de la desembocadura de un rio en la que penetra la erosión del mar.

Deltas: La zona amplia de la desembocadura de un rio donde se depositan sedimentos por encima del nivel del agua. Estos materiales pueden proceder de la erosión fluvial, marina o de ambas.

Rías: Son las zonas de antiguos valles fluviales inundada por aguas marinas. La costa adquiere una morfologia que puede llegar a ser muy abrupta.

Fiordos: Es como una ría, excepto que en este caso el valle ocupado por las aguas marinas es de origen glaciar. Dado que los valles glaciares tienen forma de U, las paredes de los fiordos suelen ser muy inclinadas o verticales.

LA EROSIÓN BIOLÓGICA

Erosión biológicaTambién los seres vivos modifican el paisaje, a veces, de forma lenta y casi imperceptible y, otras, de forma rápida y violenta. Las plantas superiores, que tenen raíces, ejercen una labor intensa se excavación mecánica del sustrato, en busca de agua. Pero, aunque menos visible, también es importante la erosión provocada por pequeños vegetales y organismos, como los líquenes.

Tambien erosionan los animales. Pequeños invertebrados, como los gusanos, airean el terreno y permiten la entrada de agua en la roca madre. Existen microorganismos cuyas secreciones atacan químicamente las piedras. Por último, los animales superiores pueden excavar y erosionar de muy distintas maneras.

La acción de los vegetales

Las plantas superiores, que tienen raíces, ejercen una labor intensa de excavación mecánica del suelo, en busca del agua que necesitan para su subsistencia. Algunas de estas raíces son capaces de atravesar sustratos de rocas blandas o, incluso, romper otras más duras.

Pero, aunque menos visible, el trabajo de otros vegetales y organismos, como los líquenes, es quizás todavía más importante, hasta el punto que se les considera los verdaderos indicadores o pioneros de la formación de los suelos. En efecto, los líquenes actuan sobre las rocas desnudas, empiezan su descomposición y permiten que otros organismos mayores continuen la tarea.

La acción de los animales

La acción de los animales
Pequeños invertebrados como los gusanos y algunos insectos airean el suelo, pero también contribuyen al proceso de meteorización de la roca madre al permitir la entrada de aire y agua, así como de microorganismos productores de secreciones que reaccionan químicamente con la roca, transformándola y erosionándola.

La labor que llevan a cabo los animales es, en general, complementaria de la que realizan otros agentes erosivos en las etapas primarias del proceso de meteorización. Sin embargo, tiene una especialísima importancia en la formación de los suelos.

Los animales ejercen una erosión mecánica con la escavación o construcción de nidos y madrigueras, así como por el paso de grandes manadas por las mismas sendas. También ejercen un control sobre la población vegetal de la que se alimentan. Finalmente, producen secreciones y excreciones de materiales que tienen un alto poder corrosivo y pueden descomponer las rocas, facilitando la acción de otros agentes.

EL IMPACTO HUMANO EN EL MEDIO

El impacto humano en el medioTodos los organismos alteran, en cierta medida, el entorno en el que viven, modelando el paisaje. El ser humano no es una excepció, al contrario. Posee una elevada capacidad de alteración gracias a sus progresivos avances técnicos.

Los paisajes surgidos por la influencia humana ocupan una extensión cada vez mayor de la superfície del planeta. Básicamente, la erosión humana se puede clasificar en dos tipos: de explotación (tierras agrícolas, forestales, minas, ... ) y de construcción (ciudades, vías de comunicación, ... ). En los últimos años, además, las actividades industriales no sólo alteran la superfície de la Tierra, sino que están poniendo en peligro la supervivencia del planeta.
Sin la intervención humana, las pérdidas de suelo debidas a la erosión probablemente se verían compensadas por la formación de nuevos suelos en la mayor parte de la Tierra.

En terreno sin alterar, los suelos están protegidos por el manto vegetal. Cuando la lluvia cae sobre una superficie cubierta por hierba u hojas, parte de la humedad se evapora antes de que el agua llegue a introducirse en la tierra. Los árboles y la hierba hacen de cortavientos y el entramado de las raíces ayuda a mantener los suelos en el lugar, frente a la acción de la lluvia y el viento.
Foto 3
La agricultura y la explotación forestal, la urbanización, la instalación de industrias y la construcción de carreteras destruyen parcial o totalmente el dosel protector de la vegetación, acelerando la erosión de determinados tipos de suelos. Ésta es menos intensa en zonas con cultivos como el trigo, que cubren uniformemente el terreno, que en zonas con cultivos como el maíz o el tabaco, que crecen en surcos.

El exceso de pastoreo, que a la larga puede transformar la pradera en desierto, y las prácticas agrícolas poco cuidadosas, han tenido efectos desastrosos en determinadas regiones del mundo.

Algunos historiadores piensan que la erosión del suelo ha sido un factor determinante en el conjunto de causas que han provocado algunos desplazamientos de población, debidos a la sequía, y en la decadencia de algunas civilizaciones. Las ruinas de pueblos y ciudades encontradas en regiones áridas, como los desiertos de Mesopotamia, indican que hubo un momento en el que la agricultura fue una actividad generalizada por toda la zona.



EL TIEMPO Y EL CLIMA

El tiempo y el climaA diferencia de los procesos geológicos, que ocurren con lentitud, la atmósfera de la Tierra se transforma constantemente, a veces, incluso, en cuestión de minutos. Estos cambios afectan directamente nuestra salud y bienestar. Es muy lógico que hayamos desarrollado la meteorología.

Pero el tiempo atmosférico depende de muchos factores que lo hacen distinto de un lugar a otro. Aunque el tiempo puntual, en un momento dado, pueda ser parecido en dos lugares de la Tierra (por ejemplo, una tormenta), a lo largo del tiempo cada zona tiene su clima, determinado por sus "estadísticas del tiempo". De su estudio se encarga otra ciencia, la climatología.

En este capítulo intentaremos comprender los aspectos fundamentales de estos procesos que, por otra parte, son verdaderamente complejos.

METEOROLOGÍA Y CLIMATOLOGÍA


La meteorología es la ciencia que se ocupa de los fenomenos que ocurren a corto plazo en las capas bajas de la atmósfera, o sea, donde se desarrolla la vida de plantas y animales.

La meteorología estudia los cambios atmosféricos que se producen a cada momento, utilizando parámetros como la temperatura del aire, su humedad, la presión atmosférica, el viento o las precipitaciones. El objetivo de la meteorología es predecir el tiempo que va a hacer en 24 o 48 horas y, en menor medida, elaborar un pronóstico del tiempo a medio plazo.

La climatología es la ciencia que estudia el clima y sus variaciones a lo largo del tiempo. Aunque utiliza los mismos parámetros que la meteorología, su objetivo es distinto, ya que no pretende hacer previsiones inmediatas, sinó estudiar las características climáticas a largo plazo.

El clima es el conjunto de fenómenos meteorológicos que caracterizan las condiciones habituales o más probables de un punto determinado de la superficie terrestre. Es, por tanto, una serie de valores estadísticos. Por ejemplo, aunque en un desierto se pueda producir, eventualmente, una tormenta con precipitación abundante, su clima sigue siendo desertico, ya que la probabilidad de que esto ocurra es muy baja.

La predicción del tiempo atmosférico

La predicción del tiempo atmosférico
La meteorología y la climatología estudian la atmósfera desde varias perspectivas. Por un lado, describen las condiciones generales del tiempo atmosférico en una zona y época concretas. Por otro, investigan el comportamiento de las grandes masas de aire con el fin de establecer leyes generales respecto a su influencia sobre otros factores. Finalmente, analizan cada uno de estos factores particulares (temperatura, presión, humedad, ... ) con el fin de descubrir las leyes que los gobiernan y poder hacer una previsión del tiempo acertada.

La meteorología tiene diversas aplicaciones prácticas, además de las evidentes. Por ejemplo, la meteorología aeronáutica se especializa en todo lo que afecta al tráfico aéreo; la meteorología agraria pretende predecir las condiciones adecuadas para las distintas labores agrícolas; la meteorología médica estudia la influencia de los factores atmosféricos sobre la salud humana.

Los mapas del tiempo

El mapa del tiempo que podemos ver en el periódico o la televisión es el resultado de siglos de experiencia. Inicialmente se trataba de simples anotaciones sobre fenómenos meteorológicos observados en distintos lugares.

Con el tiempo se fueron perfeccionando. La invención de diversos aparatos de medición (higrómetro, termómetro, barómetro, anemómetro, ... ) hizo proliferar la aparición de estaciones meteorológicas y de organismos, a nivel regional, nacional e internacional, encargados de recopilar los datos y organizarlos.

El verdadero avance llegó, sin embargo, en el siglo XX, con la puesta en órbita de satélites meteorológicos dotados de instrumentos fotográficos y analíticos cada vez más sofisticados. La informática ha contribuido enormemente a este avance, ya que los ordenadores son capaces de procesar muchos datos en poco tiempo y de elaborar modelos climàticos y de previsiones.

LAS CUATRO ESTACIONES DEL AÑO

Dependiendo de la latitud y de la altura, los cambios meteorológicos a lo largo del año pueden ser mínimos, como en las zonas tropicales bajas, o máximos, como en las zonas de latitudes medias.

En estas zonas se pueden distinguir periodos, que llamamos estaciones, con características más o menos parecidas, que afectan a los seres vivos. En general, se habla de cuatro estaciones: primavera, verano, otoño e invierno, aunque hay zonas de la Tierra donde sólo existen dos, la húmeda y la seca (zonas monzónicas).

Causas y efectos de las estaciones

Causas y efectos de las estaciones
A causa de las variaciones climáticas que sufre la Tierra, el año está dividido en cuatro períodos o estaciones. Estas variaciones en el clima son más acusadas en las zonas frias y templadas, y más suaves o impercentibles entre los trópicos. Las cuatro estaciones son: primavera, verano, otoño e invierno. Las dos primeras componen el medio año en que los días duran más que las noches, mientras que en las otras dos las noches son más largas que los días.

Las variaciones se deben a la inclinación del eje terrestre. Por tanto, no se producen al mismo tiempo en el hemisferio Norte (Boreal) que en el hemisferio Sur (Austral), sino que están invertidos el uno con relación al otro.

Mientras la Tierra se mueve con el eje del Polo Norte inclinado hacia el Sol, el del Polo Sur lo está en sentido contrario y las regiones del primero reciben más radiación solar que las del segundo. Posteriormente se invierte este proceso y son las zonas del hemisferio boreal las que reciben menos calor.

Solsticios y equinoccios

Las cuatro estaciones están determinadas por cuatro posiciones principales en la órbita terrestre, opuestas dos a dos, que reciben el nombre de solsticios y equinoccios. Solsticio de invierno, equinoccio de primavera, solsticio de verano y equinoccio de otoño.

En los equinoccios, el eje de rotación de la Tierra es perpendicular a los rayos del Sol, que caen verticalmente sobre el ecuador. En los solsticios, el eje se encuentra inclinado 23,5º, por lo que los rayos solares caen verticalmente sobre el trópico de Cáncer (verano en el hemisferio norte) o de Capricornio (verano en el hemisferio sur).

A causa de la excentricidad de la órbita terrestre, las estaciones no tienen la misma duración, ya que la Tierra recorre su trayectoria con velocidad variable. Va más deprisa cuanto más cerca está del Sol y más despacio cuanto más alejada.

Por esto, el rigor de cada estación no es el mismo para ambos hemisferios. Nuestro planeta está más cerca del Sol a principios de enero (perihelio) que a principios de julio (afelio), lo que hace que reciba un 7% más de calor en el primer mes del año que no a la mitad de él. Por este motivo, en conjunto, además de otros factores, el invierno boreal es menos frío que el austral, y el verano austral es más caluroso que el boreal.

A causa de perturbaciones que experimenta la Tierra mientras gira en torno al Sol, no pasa por los solsticios y equinoccios con exactitud, lo que motiva que las diferentes estaciones no comiencen siempre en el mismo preciso momento.

ELEMENTOS DEL CLIMA:TEMPERATURA, HUMEDAD, PRESIÓN

El clima es el resultado de numerosos factores que actúan conjuntamente. Los accidentes geográficos, como montañas y mares, influyen decisivamente en sus características.

Para determinar estas características podemos considerar como esenciales un reducido grupo de elementos: la temperatura, la humedad y la presión del aire. Sus combinaciones definen tanto el tiempo meteorológico de un momento concreto como el clima de una zona de la Tierra.

La temperatura y la sensación térmica

La temperatura y la sensación térmica
La temperatura atmosférica es el indicador de la cantidad de energía calorífica acumulada en el aire. Aunque existen otras escalas para otros usos, la temperatura del aire se suele medir en grados centígrados (ºC) y, para ello, se usa un instrumento llamado "termómetro".

La temperatura depende de diversos factores, por ejemplo, la inclinación de los rayos solares. También depende del tipo de sustratos (la roca amsorbe energía, el hielo la refleja), la dirección y fyerza del viento, la latitud, la altura sobre el nivel del mar, la proximidad de masas de agua, ...

Sin embargo, hay que distinguir entre temperatura y sensación térmica. Aunque el termómetro marque la misma temperatura, la sensación que percibimos depende de factores como la humedad del aire y la fuerza del viento. Por ejemplo, se puede estar a 15º en manga corta en un lugar soleado y sin viento. Sin embargo, a esta misma temperatura a la sombra o con un viento de 80 km/h, sentimos una sensación de frio intenso.

La humedad del aire

La humedad indica la cantidad de vapor de agua presente en el aire. Depende, en parte, de la temperatura, ya que el aire caliente contiene más humedad que el frio.

La humedad relativa se expresa en forma de tanto por ciento (%) de agua en el aire. La humedad absoluta se refiere a la cantidad de vapor de agua presente en una unidad de volumen de aire y se expresa en gramos por centímetro cúbico.

La seturación es el punto a partir del cual una cantidad de vapor de agua no puede seguir creciendo y mantenerse en estado gaseoso, sinó que se convierte en líquido y se precipita.

Para medir la humedad se utiliza un instrumento llamado "higómetro".

Presión atmosférica

La presión atmosférica es el peso de la masa de aire por cada unidad de superficie. Por este motivo, la presión suele ser mayor a nivel del mar que en las cumbres de las montañas, aunque no depende únicamente de la altitud.

Las grandes diferencias de presión se pueden percibir con cierta facilidad. Con una presión alta nos sentimos más cansados, por ejemplo, en un bochornoso día de verano. Con una presión demasiado baja (por ejemplo, por encima de los 3.000 metros) nos sentimos más ligeros, pero también respiramos con mayor dificultad.

La presión "normal" a nivel del mar es de unos 1.013 milibares y disminuye progresivamente a medida que se asciende. Para medir la presión utilizamos el "barómetro".

Las diferencias de presión atmosférica entre distintos puntos de la corteza terrestre hacen que el aire se deplace de un lugar a otro, originando los vientos. En los mapas del tiempo, los distintos puntos con presiones similares se unen formando unas líneas que llamamos "isobaras".

VIENTOS Y PRECIPITACIONES

Vientos y precipitaciones
Si la temperatura, la humedad y la presión son los elementos que determinan el clima, el viento y las precipitaciones son sus más evidentes (y perceptibles) consecuencias.

El viento es la circulación del aire de un lugar a otro, con más o menos fuerza. Su principal efecto es el de mezclar distintas capas o bolsas de aire. Cuando se concentra la humedad en una zona y esta asciende hasta una capa de aire más fría, se producen las precipitaciones.

Vientos y brisas

El viento se produce cuando una masa de aire se vuelve menos densa, al aumentar su temperatura, asciende y entonces, otra masa de aire más densa y fria se mueve para ocupar el espacio que la primera ha dejado.

Hay vientod generales y permanentes que recorren todo el globo terráqueo como consecuencia de la circulación general de la atmósfera, y otros vientos que se desencadenan a causa de los cambios meteorológicos locales. Algunos de estos últimos son periódicos, otros no; algunos afectan grandes regiones de la tierra, otros tienen un ámbito de actuación muy limitado.

Las condiciones topográficas de la Tierra hacen que haya vientos producidos por pequeñas alteraciones regionales. Por ejemplo, las brisas de tierra, aire fresco del mar hacia tierra durante el día, y las brisas de mar, aire fresco que viaja de la tierra al mar durante la noche.

Algo parecido ocurre en las zonas de montaña. Durante el dia, la brisa de montaña del valle asciende hacia las cumbres, y la brisa de valle, que desciende desde las cumbres por la noche.

Lluvia, nieve, granizo, tormentas

Lluvia, nieve, granizo, tormentas
Cuando la humedad del aire supera el punto de saturación, se condensa alrededor de pequeñas partículas sólidas que flotan en la atmósfera y se forman las nubes. Algunas de ellas se desarrollan en vertical, corrientes internas hacen que el aire ascienda hacia zonas más frías, mientras las gotas aumentan de tamaño ya que, al descender la temperatura, el agua en estado gaseoso tiende a convertirse en líquida.

Si las gotas de agua o hielo superan en peso a las fuerzas que las sostienen, caen por la fuerza de la gravedad y forman lo que llamamos una "precipitación".

Dependiendo de la temperatura y el grado de condensación, el agua se puede precipitar en forma de lluvia líquida, pero también puede hacerlo en forma de cristales de hielo (nieve) o de masas densas de hielo de diverso tamaño (granizo).

Cuando las diferencias de temperatura entre dos masas de aire son muy grandes, la condensación se produce con enorme repidez y abundancia, hay precipitaciones intensas, acompañadas de movimientos bruscos del aire y de intercambio eléctrico entre las masas (rayos y relámpagos). Es lo que llamamos "tormentas" y, en algunos casos, pueden llegar muy violentas.

LAS NUBES

Las nubesLas nubes se forma por el enfriamiento del aire. Esto provoca la condensación del vapor de agua, invisible, en gotitas o partículas de hielo visibles. Las partículas son tan pequeñas que las sostienen en el aire corrientes verticales leves.

Las diferencias entre formaciones nubosas se deben, en parte, a las diferentes temperaturas de condensación. Cuando se produce a temperaturas inferiores a la de congelación, las nubes suelen estar formadas por cristales de hielo; sin embargo, las que se forman en aire más cálido suelen contener gotitas de agua.

El movimiento de aire asociado al desarrollo de las nubes también afecta a su formación. Las nubes que se crean en aire en reposo tienden a aparecer en capas o estratos, mientras que las que se forman entre vientos o aire con fuertes corrientes verticales presentan un gran desarrollo vertical.

Hay varias clases de nubes, que podemos clasificar en tres grupos: nubes altas, nubes medias y nubes bajas.

Nubes altas

Cirros: Son nubes blancas, transparentes y sin sombras internas que presentan un aspecto de filamentos largos y delgados. Estos filamentos pueden presentar una distribución regular en forma de líneas paralelas, ya sean rectas o sinuosas. Ocasionalmente los filamentos tienen una forma embrollada. La apariencia general es como si el cielo hubiera sido cubierto a brochazos. Cuando los cirros invaden el cielo puede estimarse que en las próximas 24 h. habrá un cambio brusco del tiempo; con descenso de la temperatura.

Cirrocúmulos: Forman una capa casi continua que presenta el aspecto de una superficie con arrugas finas y formas redondeadas como pequeños copos de algodón. Estas nubes son totalmente blancas y no presentan sombras. Cuando el cielo está cubierto de Cirrocúmulos suele decirse que está aborregado. Los Cirrocúmulos frecuentemente aparecen junto a los Cirros y suelen indicar un cambio en el estado del tiempo en las próximas 12 h. Este tipo de nubes suele preceder a las tormentas.

Cirrostratos: Tienen la apariencia de un velo, siendo difícil distinguir detalles de estructura, presentando ocasionalmente un estriado largo y ancho. Sus bordes tienen límites definidos y regulares. Este tipo de nubes suele producir un halo en el cielo alrededor del Sol o de la Luna. Los Cirrostratos suelen suceder a los Cirros y preludian la llegada de mal tiempo por tormentas o frentes cálidos.

Nubes medias

Altocúmulos: Parecen copos de tamaño mediano y estructura irregular, con sombras entre los copos. Presentan ondulaciones o estrías anchas en su parte inferior. Los Altocúmulos suelen preceder al mal tiempo producido por lluvias o tormentas.

Altostratos: Capas delgadas de nubes con algunas zonas densas. En la mayoría de los casos es posible visualizar el Sol a través de la capa de nubes. El aspecto que presentan los Altostratos es el de una capa uniforme de nubes con manchones irregulares. Los Altostratos generalmente presagian lluvia fina y pertinaz con descenso de la temperatura.

Nubes bajas

Nubes bajas
Nimbostratos: Tienen el aspecto de una capa regular de color gris oscuro con diversos grados de opacidad. Con cierta frecuencia es posible observar un aspecto ligeramente estriado que corresponde a diversos grados de opacidad y variaciones del color gris. Son nubes típicas de lluvia de primavera y verano y de nieve durante el invierno.

Estratocúmulos: Presentan ondulaciones amplias parecidas a cilindros alargados, pudiendo presentarse como bancos de gran extensión. Estas nubes presentan zonas con diferentes intensidades de gris. Los Estratocúmulos rara vez aportan lluvia, salvo cuando se transforman en Nimbostratos.

Estratos: Tienen la apariencia de un banco de neblina grisáceo sin que se pueda observar una estructura definida o regular. Presentan manchones de diferente grado de opacidad y variaciones de la coloración gris. Durante el otoño e invierno los Estratos pueden permanecer en el cielo durante todo el día dando un aspecto triste al cielo. Durante la primavera y principios del verano aparecen durante la madrugada dispersándose durante el día, lo que indica buen tiempo.

Nubes de desarrollo vertical

Cúmulos: Presentan un gran tamaño con un aspecto masivo y de sombras muy marcadas cuando se encuentran entre el Sol y el observador, es decir, son nubes grises. Presentan una base horizontal y en la parte superior protuberancias verticales de gran tamaño que se deforman continuamente, presentando un aspecto semejante a una coliflor de gran tamaño. Los Cúmulos corresponden al buen tiempo cuando hay poca humedad ambiental y poco movimiento vertical del aire. En el caso de existir una alta humedad y fuertes corrientes ascendentes, los Cúmulos pueden adquirir un gran tamaño llegando a originar tormentas y aguaceros intensos.

Cumulonimbos: De gran tamaño y apariencia masiva con un desarrollo vertical muy marcado que da la impresión de farallones montañosos y cuya cúspide puede tener la forma de un hongo de grandes dimensiones; y que presenta una estructura lisa o ligeramente fibrosa donde se observan diferentes intensidades del color gris o cerúleo. Estas nubes pueden tener en su parte superior cristales de hielo de gran tamaño. Los Cumulonimbos son las nubes típicas de las tormentas intensas pudiendo llegar a producir granizo.


FRENTES, BORRASCAS Y ANTICICLONES



Frentes, borrascas y anticiclonesUna de las secciones de los medios de comunicación que más interesan al publico (que tienen más audiencia) son las previsiones meteorológicas. El interés radica en la gran infuencia que tiene el tiempo sobre nuestras actividades cotidianas.

La meteorologia se vale de diversos instrumentos que miden temperatura, humedad y presión en distintos lugares y a diversas alturas. Con ellos se elaboran los mapas del tiempo. Los elementos básicos de estos mapas son los frentes, las borrascas (o depresiones) y los anticiclones. Con ellos se puede explicar hacia donde irán las nubes, en que lugar se dan las condiciones para que descarguen su humedad y que dirección tomarán los vientos.

Frentes

Cuando dos grandes masas de aire con temperaturas distintas y uniformes se encuentran, se produce un choque que genera una variación brusca de la humedad y de la temperatura. La línea de choque se llama "frente"

Se llama frente frio cuando el aire frio avanza hacia el caliente y frente cálido si el aire caliente se abre paso hacia el frio. La zona alterada como consecuencia del choque se llama ciclón, borrasca o depresión. Por el contrario, la zona donde la atmósfera es más estable, con altas presiones, se llama anticiclón.

Las isobaras son las líneas que unen los puntos en que la presión atmosférica al nivel del mar es la misma. Suelen expresarse en milibares y son muy útiles para la predicción meteorológica. En ocasiones las isobaras forman familias de curvas encerradas unas en otras alrededor de una región donde la presión es más alta o más baja que en los puntos de su alrededor. En el primer caso constituye un anticiclón y en el segundo un ciclón.

Se llama sistema frontal a un par de frentes, el primero cálido y el segundo frío, que van con unidoa a una depresión o borrasca.

Borrascas y anticiclones

Borrascas y anticiclones
Una borrasca o ciclón es una zona de baja presión atmosférica rodeada por un sistema de vientos que en el hemisferio norte se mueven en sentido opuesto a las agujas del reloj, y en sentido contrario en el hemisferio sur. El término ciclón se ha utilizado con un sentido más amplio aplicándolo a las tormentas y perturbaciones que acompañan a estos sistemas de baja presión, en particular a los violentos huracanes tropicales y a los tifones, centrados en zonas de presión extraordinariamente baja.

Un anticiclón es una zona donde la presión atmosférica es más alta que en las zonas circundantes. Las isobaras suelen estar muy separadas, mostrando la presencia de vientos suaves que llegan a desaparecer en las proximidades del centro.

El aire se mueve en la dirección de las agujas del reloj en el hemisferio Norte y en sentido contrario en el hemisferio Sur. El movimiento del aire en los anticiclones se caracteriza por los fenómenos de convergencia en los niveles superiores y divergencia en los inferiores. El aire que baja se va secando y calentando, por lo que trae consigo estabilidad y buen tiempo, con escasa probabilidad de lluvia. En invierno, sin embargo, el aire que desciende puede atrapar nieblas y elementos contaminantes bajo una inversión térmica y llegar a formar el denominado "smog".

CLIMAS DEL MUNDO: LLUVIOSO

Aunque la variedad de climas locales en la Tierra es enorme, como siempre, los científicos se han encargado de clasificarlos. De esta forma podemos hacernos una idea aproximada de qué tiempo hace en los diversos lugares del planeta y, en consecuencia, entender mejor cómo viven sus habitantes, animales y plantas, ya que el clima determina su forma de vida.

Hay para todos los gustos, desde climas extremadamente secos a otros demasiado húmedos o, incluso, otros que reparten el año entre los dos extremos. Hay climas muy calidos, otros muy frios, otros suaves y algunos, en zonas altas, con variaciones drásticas al cabo del día.

Climas tropicales lluviosos

Climas tropicales lluviosos
Son climas con temperaturas del mes más frío por encima de 18º C. Se localizan en áreas que se extienden desde el Ecuador hasta los Trópicos a alturas inferiores a unos 800 a 1000 m, con lluvias superiores a 750 mm anuales, también son llamados climas megatermicos o cálidos con bosques. Dentro de este grupo de climas pueden reconocerse tres tipos:

Ecuatorial: Caliente y húmedo, con precipitaciones abundantes todo el año (selva tropical). Se da en las zonas de las calmas ecuatoriales, entre 10º S y 10º N. La temperatura todos los meses está entre 20 y 27º C. La amplitud térmica anual es inferior a los 5º C. La humedad relativa es muy alta. La precipitación supera los 2000 mm anuales, con un máximo en los equinoccios y un mínimo en los solsticios.

Tropical: Caliente subhúmedo con lluvias en verano (sabana). Se da entre la zona ecuatorial y en los desiertos cálidos (entre 10 y 25º de latitud Norte y Sur). Estación invernal seca que aumenta a medida que nos alejamos del Ecuador. Precipitación mínima superior a 100 mm.

Monzónico: Caliente, húmedo, con lluvias abundantes en verano, con in-fluencia del monzón. Se da en el sudeste asiático. Es el clima más húmedo del planeta, aunque tiene una corta estación seca invernal. Contraste esta-cional muy fuerte. Verano cálido y húmedo e invierno seco. La precipita-ción mínima supera los 400 mm en pocos meses.

Climas templados lluviosos

Son climas donde la temperatura media del mes más frío esta comprendida entre 18º C y -3º C y la temperatura media del mes más cálido es superior a 10º C. La temperatura del mes más frío de -3º C coincide con el límite de las zonas cubiertas de nieve por un mes o más. En este grupo hay tres regímenes pluviométricos diferentes que dan origen a los tres tipos principales de clima:

Oceánico: Se extiende entre los 35 y 60º de latitud, en la zona de influencia de los sistemas ciclónicos. Carecen de estación seca propiamente dicha, aunque tienen un mínimo estival. Las estaciones están marcadas por las temperaturas. Hacia el interior de los continentes y hacia el norte y el sur, se modifica sensiblemente.

Chino: Clima subtropical de las fachadas orientales de los continentes en la zona templada. Clima de transición entre el tropical lluvioso y el templado continental. La influencia continental se manifiesta en las olas de frío invernales. Su verano es cálido y húmedo de tipo tropical, el invierno suave y lluvioso, de tipo mediterráneo.

Mediterráneo: Clima subtropical de la zona templada, entre los 30 y los 45º de latitud norte y sur. Caracterizado por una marcada sequía estival. Se encuentra en la zona de transición entre los climas húmedos y secos. La sequía estival está motivada por la permanencia del anticiclón subtropical. Precipitación mínima de 30 mm.

CLIMAS SECOS Y FRIOS

En algunos lugares de la Tierra el aire contiene poca humedad de forma que las precipitaciones son escasa. En otros, la temperatura es tan baja que pasan buena parte del año helados o cubiertos de nieve. En el caso extremo, en los climas polares, el hielo se mantiene todo el año.

Finalmente, hay un tipo especial de clima que depende en gran medida de la altitud más que de la latitud. Se trata del clima de montaña, donde le contraste entre las temperaturas diurnas y nocturnas suele ser acusado y donde las precipitaciones tienen un régimen especial.

Climas secos

Son climas en los que la evaporación excede a la precipitación, por lo que ésta no es suficiente para alimentar corrientes de agua permanentes. Hay dos subdivisiones principales:

Semiárido: En las estepas cálida o en los límites de los grandes desiertos cálidos. Sus precipitaciones son escasas e irregulares, entre 250 y 500 mm anuales, en forma de chaparrones. Las temperaturas son elevadas durante todo el año. Gran amplitud térmica diaria. Otro tipo de clima semiárido se da en las estepas frías, en latitudes medias del interior de los continentes más grandes. Sus precipitaciones son muy escasas e irregulares, en forma de chaparrones. Las temperaturas similares a las continentales. Inviernos fríos y fuerte amplitud térmica anual.

Árido: Es el clima del desierto, ya sea cálido o frio. La aridez es extrema y las precipitaciones escasas e irregulares, inferiores a los 250 mm anuales, con una sequedad extrema del aire. Humedad relativa muy baja. Excepto en Europa, se presentan en todos los continentes. Los desiertos fríos son degradaciones del clima continental, mediterráneo o de vertientes a sotavento.

Climas frios

Climas frios
Son los climas subantárticos y subárticos húmedos con inviernos rigurosos, donde la temperatura media del mes más frío es inferior a -3º C y la temperatura media del mes más cálido mayor a 10º C. Estos límites de temperatura coinciden aproximadamente con los de bosques hacia los polos. Los lugares con este clima se caracterizan por estar cubiertos de nieve uno o más meses. Hay dos tipos fundamentales:

Continental húmedo: Ocupa la mayor parte de la zona templada propiamente dicha. Es muy contrastado. A un invierno muy frío y seco se opone un verano cálido y lluvioso. La oscilación térmica anual es muy elevada. En los bordes del clima continental las precipitaciones, aunque no muy abundantes, son regulares.

Continental suave: A diferencia del anterior, tiene una estación seca en invierno.

Climas polares

La temperatura media del mes más cálido es menor que 10º C. Se localizan en las latitudes altas y poseen precipitaciones menores a 300 mm anuales. Hay dos tipos fundamentales de este clima:

Tundra: Zona de altas presiones polares entre el polo y la isoterma de los 10º C estivales. Frío intenso y constante, ningún mes supera los 10º C debido a la oblicuidad de los rayos solares. Precipitaciones escasas y disminuyendo a medida que nos acercamos a los polos, en forma de nieve la mayoría. Hay una breve estación de crecimiento de las plantas, esencialmente helechos, líquenes, musgos y algunas gramíneas.

Clima Polar: Zona de altas presiones polares entre el polo y la isoterma de 0º C. Frío intenso y constante. Precipitaciones escasas y disminuyendo a medida que nos acercamos a los polos, en forma de nieve la mayoría. En este clima ya no es posible que haya vegetación.

Clima de alta montaña

En las altas montañas se dan climas de tipo polar, donde la latitud no influye, solo afecta la altura sobre los 3000 m y la exposición, considerados los factores que determinan un clima de montaña. La vegetación es muy variable, de acuerdo a la latitud en que se encuentren ubicadas las montañas. Este tipo de clima, que normalmente es húmedo, lo podemos encontrar alrededor del mundo en zonas de grandes cordilleras, pudiendo ser frescos a fríos